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Abstract-Frost deposition on a cold surface exposed to a warm moist air flow is simulated using a one- 
dimensional, transient formulation based on the local volume averaging technique. The spatial distribution 
of the temperature. ice-phase volume fraction (related to frost density). and rate of phase change within 
the frost layer are predicted. The time variation of the average frost density, frost thickness and heal flux 
at the cold surface shows a good agreement with the experimental data some distance downstream of the 
leading edge of a cold Rat plate. providing that the proper transport propcrtics are used. The results indicate 
that the local elTective vapor mass ditTusivity is up lo seven times larger than the molecular diffusivity of 
water vapor in air as expressed by Fick’s first law for frost temperatures between 264 and 272 K. This 

result is comparable with data measured for water vapor diffusion in snow. 

1. INTRODUCTION 

FROST formation on cold surfaces in heat exchanger 
applications has received attention since as early as 50 
years ago. Two of the recent literature reviews [I, 21 
summarize the large accumulation of frost growth 
literature. Both theoretical and experimental inves- 
tigations have been carried out. However, despite a 
fairly large number of studies dealing with the frost 
formation process, little has been done to develop a 
rigorous mathematical model that can describe the 
dynamic process of frost deposition and internal frost 
densification. Until recently, the majority of models 
for a frost layer forming on a cold surface used simple 
models [2], in which only the average frost density, 
along the direction of frost growth, and frost surface 
temperature are predicted, i.e. no distributions of frost 
density and temperature within the frost layer are 
obtained. This is mainly due to the lack of suflicient 
knowledge of transport mechanism for frost densi- 
fication within the frost layer and lack of sufficient 
experimental data confirming the trends of frost den- 
sity and temperature distributions inside the frost 
layer. Sami and Duong [3] made an attempt to include 
the spatial variation of the frost density in their model. 
However, their formulation was somewhat implaus- 
ible, and only the results of average frost density as a 
function of time were reported. In the early seventies, 
Brian and co-workers [4] found that their variable 
density model was unsuccessful in predicting the densi- 
fication of the frost in the region near the cold surface. 
Their results showed that the frost density near the 
frost surface (warm side) is much higher than that 
near the cold side, which contradicts the experimental 
results reported by Cremers and Hahn [5]. It was 

speculated in ref. [4] that ice nuclei transport, under 
thermal diffusion, is the mechanism responsible for 
the internal densification of a frost layer, which is, as 
the authors acknowledged, not confirmed. 

In this study, it is attempted to establish a math- 
ematical model that can predict both spatial and tem- 
poral variation of the frost density and temperature. 
The frost thickness and the heat flux through the frost 
layer are also predicted. The analysis of frost structure 
by Hayashi rt al. [6] provides a guideline to develop 
a model for frost formation during the initial period. 
A one-dimensional, transient heat and vapor diffusion 
formulation for porous media, using the local volume 
averaging technique, is then applied to the fully 
developed growth period of the frost layer. The appro- 
priate boundary and initial conditions are specified 
for a typical forced convection problem over a flat 
plate. The results obtained numerically are compared 
with some newly acquired experimental data [7]. 

2. ANALYSIS 

Frost growth on an initially clean cold surface can 
be divided into two periods : an early, relatively short, 
crystal growth period, and a fully developed frost 
layer growth period [6]. Due to structural differences, 
only in the fully developed growth period can the frost 
layer be modeled as a homogeneous (in a macroscopic 
sense) porous medium while, during the early crystal 
growth stage, convective heat and mass transfer over 
ice columns, rather than diffusion within the frost, is 
the main mechanism for frost growth. In the follow- 
ing, we first analyze the fully developed frost layer 
growth period, then present the model describing the 
early growth period. 
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NOMENCLATURE 
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(13) 
Biot number, II*c~~/~&,~ 
mass transfer Biot number, lrzSg/a$,,,r 
heat capacity at constant pressure 
diameter of the ice column 
vapor-air binary molecular diffusivity 
[m’ s- ‘1 
dimensionless diffusivity 
diffusion coefficient [mz s- ‘1 
diffusion factor defined in equation (16) 
Fourier number, c&I*/~~~ 
functional defined in equation (I I) 
film heat transfer coefficient 
[Wrn-‘K-‘1 
mass transfer coefficient [m s- ‘1 
enthalpy of sublimation [J kg- ‘1 
Jacob number, c,$,AT*/h,*, 
thermal conductivity 
length scale for nucleation sites 
Lewis number. u*/D* 
rate of phase change for water vapor 
Nusselt number, h:.u/kf 
pressure 
dimensionless heat flux 
air gas constant [J kg- ’ K - ‘1 
Reynolds number, u,.x/v 
water vapor gas constant [J kg- ’ K ~ ‘J 
Sherwood number, l&~/D* 
time 
temperature 
reference temperature difference, 

C, - T,* WI 

2.1. FuIIv developed~fiost iajier. growth (t > I,,) 
A frost layer, during the fully developed growth 

stage, is treated as a porous medium with a distributed 
porosity and expanding boundary (Fig. l(a)). The 
problem is formulated using the local volume aver- 
aging technique [8, 91. The major assumptions used 
to arrive at the governing equations and boundary 
conditions are : (a) the transport of heat and mass in 
frost is macroscopically one dimensional ; (b) the total 
pressure of the gaseous phase (water vapor plus air) 
in the ice matrix is constant; (c) local thermodynamic 
equilibrium exists, i.e. the gas phase temperature and 
solid (ice) temperature are the same; (d) gas-phase 
convection inside the frost layer is negligible com- 
pared with molecular diffusion; (e) the temperature 
dependence of the physical properties for individual 
phases is not considered ; and (f) the gradient in the 
ice volume fraction at the boundaries of the frost layer 
is zero. Assumptions (b) and (c) are used for the 

1 
u, ambient air velocity 
W humidity ratio [kg kg- ‘1 

s coordinate axis parallel to air flow 
z coordinate axis. 

Greek symbols 
c! constant in equation (31) 
a& effective thermal diffusivity, k&lr/p:~p* 

[m’ so ‘1 

6, frost thickness 
G reference length scale [m] 
E volume fraction 

P density 
7 tortuosity. 

Subscripts 
a air 
C cold 
f  frost 
S frost surface 
t total 

t P triple point 
tr transition 

; 

vapor phase 
ice phase 

Y gas phase which consists of air and water 
vapor 

0 initial ; reference for non-dimensional 
scales (Table 1) 

co ambient. 

Superscripts 
ratio 

* dimensional. 

purpose of simplification, and (d) is justified for one- 
dimensional problems. Assumption (e) leads to neg- 
ligible errors of the computational results for the tem- 
perature ranges studied. Assumption (f) is consistent 
with the limited experimental data on frost density by 
Bong et al. [IO], although more research work needs 
to be done. 

2.1.1. Governing equations. For a spatial domain, 
0 < z < &, Fig. I(a), the distributions of tempera- 
ture, T, volume fraction of ice phase, .sp, and volu- 
metric rate of water vapor phase change, ti, can be 
described by the following, dimensionless governing 
equations : 

energy equation 
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FIG. I. Modeling of frost growth on a flat plate: (a) the local volume averaging formulation at the full 
growth period ; (b) a unit cell for the ice column growth at the initial stage; and (c) the empirical relation 
between the transition time and the cold plate temperature [6] (the modification to fz shown is used to 

characterize the end of the ice column growth period). 

ice phase continuity equation 

gas diffusion equation 

a(E;.P,lmtijl=a D spy . 
at sz ( > eR dz ’ (3) 

where the symbols are listed in Nomenclature, and the 
dimensionless variables and parameters are defined in 
Table 1. Except for E,, and E?, all the dependent vari- 
ables are ‘local volume averaged’ or ‘intrinsic phase aver- 
aged’ [9]. The algebraic equations of constraint are : 

volumetric constraint 

&p+Ey = 1 ; 

thermodynamic relations 
(4) 

Pa = Pl -Pv 

P. = P3p.T 

(3 

(6) 

pv = P,pvT 

and for the saturation condition 

(7) 

p”=exp[-P,(i-&)I. (8) 

In the governing equations, the frost properties are 
defined as follows : 

Pr = q,Pp+qP”+Pn) (9) 

c = &rppC, +&&p” + cap,) 
P (10) 

PI- 

kc= = crk, + E? 
&p, +&pa 

P”+P. 
+(k,-k,)G (11) 

where G and 06 are derived from the thermal con- 
ductivity tensor and diffusivity tensor, respectively, 
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Table I (a). Dimensionless variables 

Table I(b). Dimensionless parameters 

which account for the non-homogeneity in pore struc- 
ture at a microscopic level [8]. Using the definition of 
the frost density. equation (9) and treating all the 
properties for individual phases as constant (since 
p,, >> p,+p.) and expressing G by a series expansion 
of pr. equation (I I) now becomes 

k,, = u”+a,pf+n,p;+“’ (13) 

where uO. CI,, etc. may be treated as constants, 
although they are found to be a weak function of the 
cold plate temperature [1 I]. In many frost studies [l- 
31, an empirical relation, based on the average of the 
frost density over the entire frost layer with the form 
of equation (13) but truncated at the second power 
term, is recommended [I I], i.e. 

k$ = 0.02422+7.214x IO-“/$ 

+1.1797x 10-6p:’ (14) 

where the dimension for the frost density is kg m-‘, 
and that for the thermal conductivity is W m- ’ K- ’ 
The reader is referred to Yen [12] for additional 
empirical equations for the thermal conductivity of 
snow. Equation (14) is employed in our calculation. 

Similar to G, the second vapor mass diffusivity. D& 
in equation (12) arises due to the lateral or three- 
dimensional diffusion (microscopic phenomenon) of 
water vapor in a frost layer that is modeled as one 
dimensional (macroscopic description). According to 
ref. [8], DX is a strong function of 8;. As a first degree 
approximation, we define 

0; = Fe7D* (15) 

where F may be called the ‘diffusion factor’. Thus, the 
effective vapor diffusivity in equation (12) becomes 

D&r = E,D*(I +F). (16) 

The diffusion factor, F, includes several physical 
effects : the combined ordinary (or bulk) and Knudsen 
diffusion, metamorphism within the frost structure 
[12], pore-size distribution (irregular shape and tor- 
tuous diffusion path) and variation of gaseous pres- 
sure within fine pores (instead of a constant pressure). 
Knudsen diffusion, which results in diffusion rates 

higher than water vapor in air. occurs when the pore 
size is of the same order as the mean free path of 
molecules. This may be important when diffusion 
within the crystal structure becomes dominant as the 
frost density increases [13], i.e. no fluid flow occurs 
within frost. More research is needed to quantify this 
complex phenomenon. Unlike in the case of k,,, there 
is no empirical relation available to evaluate, D& or 
F. Some measurements of water vapor diffusion in 
snow suggest that F should have a value of about 
three to four [ 12, 141. For simplicity, F is treated as a 
constant within the frost layer (0 < : < 6,) and F, 
is specified at -7 = &. In the discussion section, the 
influence of F on frost densification will be inves- 
tigated, and experimental data on average frost den- 
sity and thickness [7] will be used to determine F and 
FS indirectly. 

In the above formulation, the unknown variables 
are T, pV, par e,,, s;., ti, ps and pV while all the transport 
and thermophysical properties for the individual 
phases are known from empirical data. Equations 
(3)-(IO) can then be used to solve for these eight 
unknowns providing that the thickness of the frost 
domain, Sr, and other boundary and initial conditions 
are specified. 

2.1.2. Boundary conditions. At the frost surface, we 
have 

Bi,,,[ W, - W(r = &, t)] = Dew.% 
Mz = &,t) 

aZ 

+prd$ (17) 

where . 

W= 0.6218p’ 
Pl -Pv 

(18) 

Bi[T, - T(z = 6,, t)] = kcc 
U(z = s,, t) G aZ 42Prz 

(19) 

$9(z = 6r ,  1) = o. 

8Z 
(20) 
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Equations (17). (19) and (20) yield 5,-. T(: = S,-) 
and ~(1 = 6,). If, in calculation. the frost surf~c tem- 
perature becomes 0 C, equation (I 9) is then used to 
find 6, by assuming that when the surface temperature 
reaches 0 C, heat transfer rather than mass transfer 
on the surface governs the rate of frost growth. Thus, 
equation (I 7) can be used to evaluate the actual mass 
transfer coefficient, /I& This assumption implies the 
inclusion of a melting phenomenon if the heat of 
evaporation instead of the heat of sublimation is used 
in equation (19). 

At the cold plate surface, we have 

k,,(I = 0, ,) 
---d-----. = 0, (22) 

The film heat transfer coefficient between the ambi- 
ent convective flow and the frost surface is known to 
be different from that between the ambient flow and 
a smooth surface [I], and the mass transfer coefficient 
is not always analogous to the heat transfer coefficient 
because of roughness effects [ 151. A number of empiri- 
cal correlations for frost surface heat and mass trans- 
fer coefficients have been reported for various test 
conditions [IA, 6, 71. In order to compare our pre- 
diction with the experimental data presented in ref. 
[7], as will be seen later, the following correlations for 
Nu,~ and S/r, are used in this study (also see Appendix) 

The Nusselt number given in the above equation is 
based on the overall heat transfer coefficient, 1~:. The 
air-frost film heat transfer coefficient should be 

where I$‘* = h,*p,* is the frost mass concentration 
flux determined using the correlations listed in the 
Appendix. The initial conditions for the frost layer 
growth problem, i.e. the distributions of T, pv and c,, 
at I = t,,, are taken from the solutions of the early 
crystal growth model, as will be discussed below. 

A length scale, Sg, is used to normalize the variables 
(Table l), and is defined as the frost thickness when 
the frost surface temperature reaches the triple point 
temperature and the growth rate equals zero. From 
equation (17), if we put db,/dt equal to zero, this 
asymptotic frost thickness is 

Table 2. Reference datu for 6: 

Kl 293 
WI 263 
[kg rn-‘ss’] 9.5 x 10-l 

7.8 x IO” 

F,o 0.52 
!i’ I.1 

E,.,l 0.8 

where && is the time averaged effective mass diffu- 
sivity. W, is the humidity ratio at the frost surface and 
evaluated at 7$ and k’ is the ratio of the average 
effective thermal conductivity of the frost layer to the 
frost surface thermal conductivity. The above-defined 
reference length scale allows us to evaluate the mag- 
nitude of the frost thickness with respect to time and 
also to compare the thermal diffusion time scale 
(@‘/a&,,.) with the deposition time. The reference 
values, to determine the length scale for the examples 
calculated in this study, are listed in Table 2. 

2.2. Ice colutnn growl/t (0 < I < t,,) 

During the early stage of frost formation, ice 
columns grow at the sites where subcooled-liquid nuc- 
leation occurs [I I]. i.e. the continuous matrix has not 
been formed. The local thermodynamic equilibrium is 
no longer applicable to both the ice phase and gaseous 
phase adjacent to these ice columns. WC postulate a 
growing-circular-fin model of the ice column, as 
shown in Fig. 1 (b), to simulate the crystal growth. It 
is assumed that the temperature distribution of the ice 
column is one dimensional. the side-wise heat transfer 
coefficient is the same as that from the ambient, and 
the effect of thermal boundary layer due to the ambi- 
ent convective flow is included in the specification of 
the gaseous phase temperature, 2”; (Fig. l(b)), which 
has a value between the ambient and cold plate tem- 
peratures. Although the model assumed for this early 
stage of frost growth is consistent with the obser- 
vations of Hayashi et al. [6], the model is perhaps 
overly simplistic and may not exactly model all the 
physical phenomena. This model is thought to be 
of secondary interest while the fully developed frost 
growth is of primary interest. 

The dimensionless energy equation and mass bal- 
ance equation for the ice column in Fig. l(b) are 

ad 
- = 2Bi,,,( w;. - W) at 

(27) 

(28) 

where W is evaluated at T&, I) using equation (l8), 
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and IV;. is evaluated at T,. 7’; is a constant and is 
found from the following approximation : 

T; = aT, +(I -a)T, (29) 

where 0 < c( < I depending on the ambient thermal 
boundary layer thickness. The parameter E will be 
larger for turbulent flow than that for laminar flow. 
The precise determination of r;. requires knowledge of 
Huid mechanics coupled with heat and mass transfer 
around the ice columns (the surface roughness effect). 
Using the approximation (29) simplifies the for- 
mulation but still includes the non-equilibrium effect 
between the ice temperature and adjacent air tem- 
perature. (The selected value of 2. for the example 
rest&s presented later, is listed in Table 3.) The vari- 
ables in the above equations arc normalized with the 
same scales as listed in Table I, except for the fol- 
lowing quantities : 

The boundary conditions arc 

dSr 
~ = Bi,,,[ w,. - W(: = S,)] 
dr 

T(z = 0, I) = T, 

(30) 

(31) 

i;tl(z = 0, I) 
& = 0 (33) 

d(: = sr, I) = Cl”. (34) 

In addition, it is assumed that the same film heat 
transfer coefficient applied to the entire ice surface, 
and the following equation, based on the thermal 
boundary layer theory [ 161, is used 

Table 3. Selected parameters used in numerical examples 

T: 
[ii; 

253 (263)t 
7-Z 293 
W,. 

t"p, kg-'1 
8.854 x 10-j 

4 I 0.0375 
I* i-i 5x lo-J 
(1; 

[iit; 
lo-' 

G, lo-” 
s* 0.3 
8 t:; 2.9 x IO-’ 
P: [kg m-7 92.841 
&IT pm-’ Km’] 0.2451 
a 0.4 
aXefl [m’s-‘1 1.38 x lO-6 
/* 
FL, 

bl 240 (800) 
3.94 x IO4 (3.87 x IO”) 

F 0.1 I (3) 
6 -0.9 (-0.33) 

t The value in parentheses corresponds to Tr = 263 K. 
: The reference +,, = 0. I. 

NN .I = 0.03ReF' Pr"-". (35) 

The mass transfer coefficient is found based on heat 
and mass transfer analogy [ 171 

(36) 

The initial conditions for the ice column growth 
period are assumed to be 

S,.(f = 0) = sr,, (37) 

d(z-, t = 0) = d” (38) 

T(:, I = 0) = r,. (39) 

It is implied that at time r = 0 small ice particles are 
distributed uniformly over the plate at a large number 
of nucleation points. 

It is reported in an expertmental study [6] that the 
transition time, characterizing the end of the crystal 
growth period, depends on the cold plate temperature. 
as shown in Fig. I(c). Note that the above circular- 
fin approximation for the ice column growth does not 
lead to any dendritic frost growth near the end of the 
so-defined crystal growth period described in ref. [6]. 
Therefore, the transition time in the present study 
would be shorter than that obtained from exper- 
imental observations by ref. [6]. Guided also by the 
comparison of our calculation with the experimentally 
measured average density data [7] (as will be discussed 
further below). we modify the transition time in the 
calculation, t,,, to be 2/3 of that reported by ref. [6] 
(see the second line in Fig. l(c)). With this modi- 
fication, the dendritic frost growth is considered to be 
a part of the full growth period of frost. 

The average density of the frost layer at a given 
time is calculated from the following equations : 

ice column growth period 

(40) 

frost layer growth period 

pr(r, I) dz. (41) 

At the transition time, the local average temperature 
is calculated as follows : 

T(z,r = IL,) = E,,T,,(Z,f = t,,)+(l -&,,)T: (42) 

where sp = r&‘/(4/‘). In order to evaluate the effect 
of frost growth on heat transfer through the colcl 
plate, a dimensionless heat flux, Q = Q:/Qz, is defined 
where Q: is the heat flux conducted from the frost to 
the cold plate and Qt = /r*(Tz -T$) is the con- 
vection heat flux from the ambient to the cold plate 
without the frost formation : 
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ice column growth period 

frost layer growth period 

It should be noted that the initial values of brO, d,, and 
I are related to the subcooling process of condensed 
water vapor; therefore, they depend on the material 
used for the cold plate, degree of subcooling and ambi- 
ent conditions. The experimental determination of 
this relation under subfreezing conditions is impor- 
tant. In this study, these data are selected based on 
the average values in drop-wise condensation appli- 
cations [I81 (see also Table 3). 

2.3. Coniprrtalinnal pmwiure 

The finite difference forms of equations (l)-(3), 
(27) and (28) are derived using the upwind diffcrencc 
scheme for the time derivative. the central diffcrencc 
scheme for internal nodes, and the backward, or for- 
ward. difference scheme for the boundary nodes. A 
downwind first-order difference scheme is used for the 
frost growth rate, equations (I 7) and (30), to achieve 
stability. Equation (I 7) (or (30) for the early stage) 
then gives the frost thickness for the next time step. If  
the frost surface temperature, T(z = S,), reaches the 
triple point temperature, equation (19) is used to find 
(5, for the next time step. Equations (l)-(3) yield T, E,, 
and /ii, and the vapor density is found from Clapeyron 
equation (8). The relaxation iteration scheme is used 
to solve for the difference equations. The results are 
considered to be convergent when the deviation of 
any variable from the last iterated value is within 
Io-J%. 

The number of the grids in the frost domain is fixed. 
Therefore, for each time step, the spatial coordinates 
are updated based on the new boundary position, S,. 
The spatial distribution of each variable at the last 
time step is also updated to fit the new coordinate 
system, using a cubic spline polynomial interpolation 
method. To minimize the errors introduced by inter- 
polation, a small time step of I s is chosen in the 
calculations. The spatial grid number of IO is used; 
increasing the grid number to 20 shows a negligible 
difference in the results. A typical computation for a 
2 h frost formation process takes about 4.3 cpu min 
on a medium-speed main frame computer. 

3. RESULTS AND DISCUSSION 

3.1. Initialfrosl formation 
Calculations are performed for the typical frosting 

conditions listed in Table 3. The typical distributions 
of the ice column diameter and the temperature along 

0.0 0.2 0.4 0.6 0.8 1.0 

us, 

W 
8.7g I 

6.76 R 
0.0 0.2 0.4 0.6 0.8 1 .o 

d4 

FIG. 2. Spatial distributions of (a) the ice column diameter; 
and (b) temperature: T,* = 263 K (the other conditions are 

listed in Table 3). 

the ice column are shown in Fig. 2. It can be seen that 
the ice column diameter at the frost surface (: = ii,) 
is less than that at the cold plate surface (Z = 0). This 
distribution in (1, although directly resulting from the 
specification of the boundary condition at 1 = 6r (i.e. 
d(: = 6,) = &,), is much closer to the experimental 
observation [6]. As will be discussed below, the trend 
in the frost density distribution during the full-frost- 
layer growth period largely depends on the dis- 
tribution in E,, at t = I,,. In Fig. 2(b), it is shown 
that the temperature distribution in the ice column is 
relatively steady, compared with the strong variation 
in d with time. In general, the temperature of the ice 
column is very close to the cold plate temperature (for 
example, shown in Fig. 2(b), T* - r,* < I ‘C). 

3.2. Frost layer growth 
Figure 3 presents the typical distributions of four 

important variables within the frost layer for various 
Fourier numbers. Both temperature and vapor den- 
sity show a non-linear distribution within the frost 
layer (although the non-linearity for the temperature 
is less significant than that for the vapor density, Figs. 
3(a) and (b)). The non-linearity in the vapor density 
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FIG. 3. Spatial distributions of (a) T, (b) pV, (c) ti, and (d) E~ for various Fo: T: = 263 K 

results in a negative rate of phase change, ti (Fig. 3(c), 
also see equation (5)), meaning that water changes 
from its gaseous phase into the solid phase [8]. 
According to the continuity equation for the ice phase, 
equation (2) E,, then increases with time, as shown in 
Fig. 3(d). It is interesting to see that the mass rate of 
phase change per unit volume, ti (which is the rate of 
densification), has a maximum absolute value near 
the frost-air interface, the warm side of the frost layer. 
This trend leads to frost in that region densifying 
faster than that at the region close to the cold plate. 
As shown in Fig. 3(d), the curve of .sp at Fo = 1180 is 
flatter than that at Fo = 290. The results are consistent 
with the experimental data on the frost density dis- 
tribution, reported in ref. [S]. In that work, it was 
found that during the initial period the frost density 
is higher near the cold side, while after a longer period 
of time, the frost density near the warm side becomes 
larger. However, caution must be taken in making a 
qualitative comparison between two studies since the 
data in ref. [S] are very limited. Nevertheless, the 
above-mentioned results lead to the following two 
observations : 

(i) The frost density distribution in the full growth 
period largely depends on its distribution during the 
early growth period ; and 

(ii) The maximum densification rate occurs near the 
warm side of the frost layer. 

As shown in Fig. 4, the temperature, T,, no longer 
significantly increases with time after Fo reaches a 
certain value. During the quasi-steady-state period 

after Fo = Fo,,, the temperature and vapor density 
can be represented by the following expressions 

T(Fo > Fo,,) = T(z/&, Fo = Fo,,) 

p,(Fo 3 Fo,) = pvWr,Fo = Foss) 

where 0 < z ,< a,-. As seen in Fig. 4, Fo,, increases as 
the cold plate temperature, T,, increases. In general, 
Fo,, is also strongly related to the ambient air humidity 
ratio and temperature. 

In Fig. 4, the time variation of the dimensionless 
heat flux, Q, is also shown. For T,* = 263 K, Q, during 
the early growth period, increases with time, indi- 
cating the strong fin-effects. As the frost layer grows 
further, Q decreases monotonically. At Fo = 1200, Q 
is reduced by about 30% of its value at Fo = Fo,,. 
Note that Q includes both latent heat transfer due to 
phase change and apparent heat transfer from the 
ambient. In Fig. 4(b) (T,* = 253 K), Q at Fo = 1200 
is about 50% of its value at Fo = Fo,,. This indicates 
that, under the same ambient conditions (T,, u, and 
IV,), the phase change effect is weaker for the low 
cold plate temperature. On the other hand, the 
reduction in heat transfer (including both latent 
and apparent heat) due to frost build-up is more 
significant for the cold plate at a lower surface 
temperature. 

3.3. Comparison of the prediction with the experimental 
data 

The accurate measurement of the temperature and 
frost density within the frost layer is a very difficult 
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FIG. 4. Time variations of the temperature and dimensionless 
heat flux for (a) T,* = 263 K; and (b) r,t = 253 K. 

task. To date, no data are available in the literature 
which give a quantitative description of these dis- 
tributions as a function of time. The most reliable 
data taken from the experiments are usually those 
for the average frost density and thickness. In an 
experimental study [7], a series of tests was performed 
to measure the average frost density and thickness 
as a function of time and ambient conditions. The 
comprehensive correlations that describe the relations 
between the frost properties and ambient parameters 
(such as Reynolds number, humidity ratio, etc.) were 
developed (see the Appendix). In Fig. 5, the results 
taken from these empirical correlations are compared 
with the predictions obtained in this study. Good 
agreement between the measured and predicted $ 
and 8: has been achieved for Tr = 263 K (with the 
diffusion factor, F = 3 ; see equation (16)). For 
T,* = 253 K (F = 0.1 l), some deviation at the later 
stage of frost growth (the quasi-steady state) in 8: 
exists. This may be in part due to the uncertainty 
associated with empirical correlations, which are 
slightly outside the applicable range of - 15°C < Tr < 
-5°C. 

In Fig. 4, the measured heat flux is also compared 
with the prediction. The predicted heat flux, nor- 
malized with the convective heat transfer (equations 
(43) and (44)), agrees well with the measured one for 
the quasi-steady state. At the early stage, the pre- 
diction is higher than the experimental data. This is 
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FIG. 5. Comparison with the experimental data: (a) the 
average frost density ; and (b) frost thickness. 

partly due to the extrapolation of the correlations to 
the initial growth stage and partly because of the 
simplicity of the early growth model. 

3.4. Effective mass d#iisivity offrost 
The effect of F on the prediction of the frost prop- 

erties is investigated by assuming different values and 
comparing the results with the measured frost thick- 
ness and average frost density. In Fig. 6(a), the 
numerical results of the average frost density, frost 
thickness and frost surface temperature are shown for 
different F values under the same ambient and cold 
plate boundary conditions. It can be seen that an 
increase in F results in an increase in the predicted Pr, 
but it has a less significant effect on 6r, and it will 
cause the surface temperature of the frost layer, T,, to 
reach T,p at a later time. (The best agreement with the 
experimental results is, in this example, achieved for 
F = 3 for Ty = 263 K, a result that is consistent with 
measurements of water vapor diffusion in snow [l2, 
141; these data indicate F ranging from 2.2 to 3.5 
for a snow temperature of 264-272 K.) This further 
suggests that the accurate determination of the frost 
surface temperature may help indirectly to confirm 
the significance of F in modeling the frost growth and 
densification. 

Similar calculations are also performed for different 
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cold plate temperatures to find a qualitative relation 
of F, using the empirical correlations as a guide. Fig- 
ure 6(b) shows the diffusion factors, F (internal) and 
F, (at the frost surface) as a function of Tr. It can be 
seen that, based on the experimental data, F increases 
as the cold plate temperature increases within the 
range of Ty shown in Fig. 5 ; the model is not applied 
for Tr > 268 K because experimental observations 
indicate no frost cover when T3j = 293 K and 
T$ > 268 K [7]. Also, F is always positive or for 
very cold temperatures perhaps near zero, while F, is 
negative for T,* < 266 K. This means that, for 
T,* > 253 K and T*, = 293 K, the total effective mass 
diffusivity within the frost layer, D$, is larger than the 
effective diffusivity which only accounts for molecular 
diffusion (=.s$*). On the other hand, the effective 
diffusivity at the interface between the frost and ambi- 
ent is less than the value E,D*. This is generally 
expected, since, for diffusion from a plain medium to 
a porous medium, the diffusion resistance, due to 
geometrical change, causes the effective diffusivity to 
be less than that for molecular diffusion, i.e. the tor- 

tuosity factor, l/(1 + FJ, is greater than I, as known 
in the diffusion processes in porous media with fixed 
matrices [19]. The difference between internal trans- 
port properties and interfacial properties (effective 
diffusivity, thermal conductivity, etc.), emerging from 
the volumetric averaging formulation, is a topic that 
has drawn a lot of attention recently [20. 211. But for 
the frost problem (moving boundary problem), no 
analysis has been made yet. 

It is noted that F, mainly influences the prediction 
of Sr (equation (I 7)) while Feffects E,, (i.e. the internal 
densification). The theoretical determination of F (or 
FJ is a difficult task but may be possible if a proper 
structural model for the frost layer is constructed, as 
demonstrated in ref. [22] where the porous matrix is 
fixed. However, even in that case [22], only a very 
simple periodic structural model was used. For a frost 
layer, the time variation of the structural charac- 
teristics needs to be considered. At this time, we only 
point out that the non-homogeneity in the frost pore 
size at the microscopic level, resulting from sim- 
ultaneous heat and mass transfer and phase change, 
causes an enhancement in the local diffusion flux, 
which may be, along with frost metamorphism, 
responsible for the local frost densification in addition 
to the main stream diffusion along the coordinate 
direction. This phenomenon, when described on a 
one-dimensional, macroscopic basis, can be expressed 
by a local effective mass diffusivity which is larger 
than c,D* (i.e. F > 0). This conclusion, although no 
direct comparison can be made, is supported by a 
microscopic study of water vapor transport in an 
assumed two-dimensional ice crystal lattice, which 
simulates snow metamorphism under a temperature 
gradient, by Christon et a/. [23]. Their reported results 
show that the ratio of the effective diffusivity to the 
water vapor-air binary diffusivity, as a function of 
temperature and area (of the lattice) ratio, is between 
1.9 and 2.5 for a temperature of 263-273 K and an 
area ratio of 0.1-0.5. This ratio is translated in our 
case to an F to be approximately 1-2. 

4. SUMMARY 

This study presents a new frost growth modei that 
predicts a complete process of frost growth on a flat 
plate for given ambient conditions and cold plate tem- 
perature. Both spatial and temporal variations of tem- 
perature, frost density and rate of densification can 
be predicted; along with the time variation of frost 
thickness, provided that the proper transport prop- 
erties are used. Guided by experimental data, it is 
found that the internal frost densification can be 
described by using an effective mass diffusivity that 
accounts for the deviation of actual mass transport 
phenomenon from Fick’s diffusion. For a cold tem- 
perature of 267 K, the results shown that the effective 
mass diffusivity for internal densification is up to 
seven times larger than the counterpart for molecular 
diffusion of water vapor in air, while the opposite is 
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true for intcrfacial effective diffusivity. These results 

compare well with the independent measurements of 
effective mass diffusivity of water vapor in snow for a 

temperature range of 264-272 K. 
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APPENDIX 

The following empirical correlations were reported in ref. 
171: 
frost thickness 

average frost density 

x &O 715 Foo.‘5’ 

“II 4, 

where 4, is the hydraulic diameter characterizing the 
ambient, internal, forced convective flow, Fo,,,, is defined 
using the air properties, and T’ = T,,- T,. The applicable 
range of the above relations is 

- 15°C < T; < -5°C. 3x IO’ < Rc,,,, C 7x IO’ 

13 < Fad,, < 104, 0.004 < IV, ,< 0.01. 


